
linear & quadratic knapsack optimisation
problem
Supervisor: Prof. Montaz Ali

Alex Alochukwu, Ben Levin, Krupa Prag, Micheal Olusanya, Shane Josias,
Sakirudeen Abdulsalaam, Vincent Langat
January 13, 2018

GROUP 4: Graduate Modelling Camp - MISG 2018

Introduction

∙ The Knapsack Problem is considered to be a combinatorial
optimization problem.

∙ The best selection and configuration of a collection of objects
adhering to some objective function defines combinatorial
optimization problems.

1

Problem Description: Knapsack Problem

To determine the number of items to include in a collection such
that the total weight is less than or equal to a given limit and the
total value is maximised.

2

Problem Description: Knapsack Problem

3

Mathematical Formulation:Linear Knapsack problem

Given n-tuples of positive numbers (v1, v2, ..., vn) , (w1,w2, ...,wn) and
W > 0. The aim is to determine the subset S of items each with
values,vi and wi that

Maximize
n∑
i=1

vixi, xi ∈ {0, 1}, xi is the decision variable (1)

Subject to:
n∑
i=1

wixi < W, (2)

where W <

n∑
i=1

wi.

4

Quadratic Knapsack Problem

∙ Extension of the linear Knapsack problem.
∙ Additional term in the objective function that describes extra
profit gained from choosing a particular combination of items.

5

Mathematical Formulation

Maximize
n∑
i=1

cixi +
n−1∑
i=1

n∑
j=i+1

dijxixj (3)

Subject to:
n∑
j=1

wjxj < W, j = {1, 2, ...,n}, (4)

where x ∈ {0, 1}, Max wj ≤ W <

n∑
j=1

wj.

6

Application

A Knapsack model serves as an abstract model with broad spectrum
applications such as:

∙ Resource allocation problems
∙ Portfolio optimization
∙ Cargo-loading problems
∙ Cutting stock problems

7

Complexity Theory

∙ The abstract measurement of the rate of growth in the required
resources as the input n increases, is how we distinguish among
the complexity classes.

8

Proposed Solution Schemes

The following solution schemes were proposed for solving the Linear
and Quadratic Knapsack Problem:

∙ Greedy Algorithm
∙ Polynomial Time Approximation Scheme
∙ Exact Method (Branch and Bound Algorithm)
∙ Dynamic Programming (Bottom - up)

9

Greedy Algorithm

1. Identify the available items with their weights and values and take
note of the maximum capacity of the bag.

2. Use of a score or efficiency function, i.e. the profit to weight ratio:
vi
wi

.

3. Sort the items non-increasingly according to the efficiency
function.

4. Add into knapsack the items with the highest score, taking note of
their accumulative weights until no item can be added.

5. Return the set of items that satisfies the weight limit and yields
maximum profit.

10

Greedy algorithm for QKP

1. Sample k items from the set of n items.
2. Obtain a set of all pairs from the k items.
3. Sort the items non-increasingly according to the efficiency
function

S =
dij

wi + wj
.

4. Add into knapsack the pair of items with the highest score,
ensuring that the accumulated weight does not exceed the
maximum capacity.

5. Repeat steps 1 through 4 until pairs can no longer be added.
6. Fill remaining capacity with singleton items, using the previous
greedy approach.

11

Polynomial Time Approximation Algorithm (PTAS)

1. Consider all sets of up to at most k items

F = {F ⊂ {1, 2, ...,n} : |F| ≤ k,w(F) < W}

2. For all F in F
∙ Pack F into the knapsack
∙ Greedily fill the remaining capacity
∙ End

3. Return highest valued item combination set

12

Branch and Bound Method

Branch and Bound performs systematic enumeration of candidate
solutions by means of state search space.

13

Dynamic Programming (DP)

∙ DP: What is the idea?
∙ Pros?
∙ Cons?

14

Dynamic Programming: Bottom-up

1. Construct V ∈ Rn×W

n = Total number of objects to be packed
W = maximum weight capacity.
For 1 ≤ i ≤ n, and 0 ≤ w ≤ W, V(i,w) stores the maximum value of
variables {1, 2, . . . , i} of size at most w.

2. V(n,W) is the optimal value of the problem.
3. Recursion
The process is as follows:
Initialization:
V(0,w) = 0∀w ∈ [0,W] (no item); V(i,w) = −∞ if w < 0
Recursive step:
V(i,w) = max(V(i− 1,w), vi + V(i− 1,w− wi)) for
1 ≤ i ≤ n, 0 ≤ w ≤ W.
vi ∈ V̄ is the set of values of the objects to be packed while wi ∈ W̄
is their corresponding weights. 15

Dynamic Programming- Bottom - Up Approach

Let W = 10 and

i 1 2 3 4
vi 10 40 30 50
wi 5 4 6 3

w 0 1 2 3 4 5 6 7 8 9 10
i ҁ 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 10 10 10 10 10 10
2 0 0 0 0 40 40 40 40 40 50 50
3 0 0 0 0 40 40 40 40 40 50 70
4 0 0 0 50 50 50 50 90 90 90 90

The optimal value is V (4, 10) = 90. The items that give the maximum
value are 2 and 4.

16

Results and Discussions

Table: Algorithm Optimality

Greedy PTAS Dynamic Programming BB
N ҁ 30 261 261 261 261
N ҁ 50 480 481 481 481
N ҁ 100 891 891 891 891

17

QKP optimality

Table: QKP optimality

K = 0.5 ∗ N K = N
N ҁ 10 195 179.5
N ҁ 20 735.5 853.5
N ҁ 30 1739.5 2572.5
N ҁ 50 4755 7528
N ҁ 100 18551.5 16855

18

Complexity Analysis of the Algorithms

1. Greedy Algorithm
∙ With sorting: O(nlogn)
∙ Without sorting: O(n2)

2. Polynomial Time Approximation Scheme
∙ O(knk+1)

3. Dynamic Programming
∙ O(nW)

19

Greedy Runtime

20

PTAS Runtime

21

DP Runtime

22

Conclusion

1. Combinatorial problems are hard to solve.
2. Many applications in industry.
3. Interesting research questions.
4. Better data.

23

References

K. Lai.
The Knapsack Problem and Fully Polynomial Time
Approximation Schemes (FPTAS).
18.434: Seminar in Theoretical Computer Science, 2006.

M. Ali.
Discrete Optimisation .
Lecture notes.

24

